(a)	Convert the hexadecimal number 3C to binary.	[2]
(b)	Convert the hexadecimal number 3C to denary.	[2]
(c)	Convert the binary number 11110111 to hexadecimal.	[2]
(c)	Convert the binary number 11110111 to hexadecimal.	[2]
(c)	Convert the binary number 11110111 to hexadecimal.	[2]
	Explain why hexadecimal numbers are often used to represent binary numbers.	[2]

	Convert the denary number 212 to a binary number with 8 bits.	[2]
(b)	Convert the denary number 212 to hexadecimal.	[2]
	Convert the hexadecimal number 2F to denary.	[2]

(a)	Convert the denary number 162 to hexadecimal. Show your workings.	[2]
(b)	Convert the hexadecimal number 1E to denary. Show your workings.	[2]

(a) Showing your workings, complete the table below, converting between denary, binary and hexadecimal numbers as necessary.

	-
	ш
m	
w	•

Denary	Binary	Hexadecimal
104 ₁₀	011010002	68 ₁₆
	010011012	4D ₁₆
28 ₁₀		1C ₁₆
147 ₁₀	100100112	

i) Showing your workings, add 010111012 and 000100112.	[2]
(ii) Using an example of binary addition, explain the concept of overflow.	[4]

Denary	Binary	Hexadecimal
41 ₁₀	00101001 ₂	29 ₁₆
58 ₁₀		3A ₁₆
	101011112	AF ₁₆
253 ₁₀	11111101 ₂	

Answer

(b)	Complete t	he table to	calculate th	ne binary ad	ddition of 14	4 ₁₀ to 67 ₁₀ ι	ısing an 8-l	oit register. [3]
67 ₁₀								
14 ₁₀								

(c) Using a suitable example, explain the concept of overflow in relation to binary addition. [3]	

2017 – SHIFT

Perform	arithmetic	shifts o	n the	numbers	below	and	state	the	effect	of	each	of
these op	erations.											

i)	Arithmetic shift left by one place on 010111102.	[2]
ii)	Arithmetic shift right by two places on 00111100 ₂ .	[2]

Bit patterns can be used to represent the different states of an embedded system. These bits can be manipulated by several different operations.

Perform an arithmetic shift left by 3 places on the 16 bit binary number 0000101001011112 and state the effect that this has on the number.

[2]

