Learning Intention

To develop knowledge

 Understand what the hexadecimal number system isTo secure understanding by
binary to hex

To convert between binary, denary and hexadecimal numbers

To achieve excellence by

 Explain the use of hexadecimal numbers and hexadecimal numbers and

Task 1 - Neatly draw the Hexadecimal conversion table into books (slide 6)

Learning Intention

Task 2

Write a couple of sentences explaining:
a) What is Hexadecimal?
b) Why is it used?

Task 3 - Complete the Hexadecimal to binary work sheet.
There are $\mathbf{2}$ sheets in this worksheet

1. Hex to binary
2. Binary to hex - label each task clearly in your book

Excellence - Complete the extra questions

To develop knowledge
Understand what the hexadecimal number system is

To secure understanding by To convert between binary, denary and hexadecimal numbers

To achieve excellence by Explain the use of
hexadecimal numbers and justify why it is used

Hexadecimal

Hexadecimal codes are used in many areas of computing to simplify binary numbers.

Computers do not use hexadecimal -it is used by humans to shorten binary to a more easily understandable form.

Hexadecimal is translated into binary for computer use.

Some examples of where hex is used in computing:
colour references:

assembly language programs:

To develop knowledge Understand

 $\begin{array}{lllllllllllllllllllllll}6 \mathrm{~F} & 8 \mathrm{E} & 30 & 30 & 68 & 29 & \text { OD } & 0 \mathrm{~A} & 00 & \mathrm{FE} & 10 & 00 & 01 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ 00 & 80 & 20 & 21 & 00 & 07 & \mathrm{FE} & \mathrm{FF} & \mathrm{FF} & 00 & 08 & 00 & 00 & 00 & \mathrm{FO} & \mathrm{FF} & 02 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$ 00 OO
úe SafeBoot \square ….............й (u) ©) : 1 .e?casubea

 f30
 u
 IE IpoD|halbea' corruptece - HpeD |haro dis.erroź (errožooh) - Béa - $\epsilon!$.ppy....

- v

Number representation:

We've already covered:

Denary	10 digits	Base 10
Binary	2 digits	Base 2
Hexadecimal	16 digits	Base 16

- Hex = 6
- Decimal = 10
- Therefore Hexadecimal = 16
- Otherwise known as base 16.

To develop knowledge Understand what the hexadecimal number system is

Hexadecimal

- Uses base 16, which represent a value.

Binary	Decimal	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	B
1100	12	C
1101	13	D
1110	14	E
1111	15	F

Hexadecimal－When is it used？

Colours can be represented in a computer as Hex values as it is simpler to use and understand than binary

The system below uses two hex digits instead of binary digits for each colour Binary number
\downarrow
Hex value of this colour＝\＃FF6600

Binary value $=111111110110011000000000$

Binary - Nibbles

- How many Bits are there in a Byte?
-There are 8 bits in a Byte

128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

- How many bits in half a byte?
- There are 4. This is called a Nibble.

Nibbles

-The binary for decimal 75 is

01001011

- To convert it to Hex break it down into nibbles using spaces.
- We start by grouping it into 4 starting from the right

Nibbles

We then write it out with a space between each nibble.

0
 10
 00
 10

Binary to Hexadecimal

0100

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	1	0	0

$$
\begin{aligned}
& \mathbf{7} \\
& \begin{array}{|l|l|l|l|}
\hline \mathbf{8} & \mathbf{4} & \mathbf{2} & \mathbf{1} \\
\hline 1 & 0 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

11
(in decimal)
1
in hexBdecimal

Hexadecimal to binary

1. First split up the Hexadecimal number
2. Convert to nibbles
3. Put the nibbles together

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
0	1	0	0

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	0	1	1

0100

1011

4B is 01001011 in binary

