Learning Intention

To develop knowledge by
 understanding that binary numbers
 can be changed to represent
 positive and negative numbers

To secure understanding by explaining how negative numbers are creating using different methods

To achieve excellence by

Applying knowledge to perform conversions and subtractions using
 two's complement.

Signed numbers

Signed number

An integer which has either a negative
or positive sign indicator (+ 53 or -53)

A computer can use both positive and negative numbers

To develop knowledge by understanding that binary numbers can be changed to represent positive and negative numbers

Signed binary numbers use the Most Significant Bit (MSB) (far left number) to display a range of either positive or negative numbers

Most significant bit

 MSB| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 bit |

Sign and magnitude

One method of using the MSB for signed numbers is called sign and magnitude

In this method:

1 on the MSB indicates a negative number so 1000001 =-1
0 on the MSB indicates a positive number so 0000001 = + 1

The largest possible number is $\mathbf{+ 1 2 7}$ (or 01111111).
The smallest possible number is $\mathbf{- 1 2 7}$ (or 11111111)

To develop knowledge by understanding that binary numbers can be changed to represent positive and negative numbers

To secure understanding by explaining how negative numbers are creating using different methods

Two's compliment

Another method of representing signed numbers is called Two's complement
Again it uses the MSB to determine positive or negative

$$
\begin{aligned}
& 0=\text { positive } \\
& 1=\text { negative }
\end{aligned}
$$

The rules:

Positive numbers

Remain the same as normal binary e.g $4=0100$ (up to 0111 for 4 bit)
$127=01111111 \quad$ (0 on the msb = positive 127)
Negative numbers are different and follow this method:

To develop knowledge by understanding that binary numbers can be changed to represent positive and negative numbers

To secure understanding by explaining how negative numbers are creating using different methods

Two's compliment: Negative numbers

Example: find -5

Step 1: Write the positive version

Step 2: flip all bits

Step 3: Add 1 to it

To secure understanding by explaining how negative numbers are creating using different methods

To achieve excellence by
Applying knowledge to perform conversions and subtractions using two's complement.

$$
\begin{aligned}
& 0=\text { positive } \\
& 1 \text { =negative }
\end{aligned}
$$

Two's compliment: Negative numbers

Step 1: Write the positive version

Step 2: flip all bits

Step 3: Add 1 to it

- 5 using two's complement is

To secure understanding by

 explaining how negative numbers are creating using different methodsTo achieve excellence by
Applying knowledge to perform conversions and subtractions using two's complement.

1	0	1	1		
	1	1	1		
1	1	0	0	\leftarrow	addition rules
:---					

$$
\begin{aligned}
& 0=\text { positive } \\
& 1 \text { =negative }
\end{aligned}
$$

Two's compliment: Negative numbers

Example: 8 bit number
Step 1: Write the positive
version

128	64	32	16	8	4	2	1
0	0	1	1	0	1	0	1

Step 2: flip all bits

$$
\begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

0 = positive
1 =negative
Step 3: Add 1 to it

- 53 using two's complement is

$$
\begin{aligned}
& -128 \\
& 6
\end{aligned} 3216
$$

Binary subtraction

Binary subtraction works by

- taking the Two's complement of the second number
- and adding it to the first

Example: 7-5 = 2
Positive
binary versions:

Two's
compliment
of $2^{\text {nd }}$
number:
Add them together in usual way:

7

8421
0111

5

8	4	2	1
0	1	0	1

Reminder: Two's complement of 5
$\begin{array}{llll}-8 & 4 & 2 & 1\end{array}$
$1011=-5$ $(-8+2+1)$

To secure understanding by explaining how negative numbers are creating using different methods

To achieve excellence by Applying knowledge to perform conversions and subtractions using two's complement.

Tasks 1 and 2

Task 1 - What is meant by a signed number?

- Draw a diagram showing an 8 bit number
- Label the Most significant bit

Learning Intention

Task 2

Sign and Magnitude

- Explain how sign and magnitude is used to represent negative and positive numbers - use an example/diagram

Two's complement

- Explain what Two's compliment is and the method used to make negative numbers - use an example/diagram

Subtraction

- Write down the method of how to subtract binary numbers

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

To secure understanding by

 explaining how negative numbers are creating using different methods
To achieve excellence by

Applying knowledge to perform conversions and subtractions using two's complement.

Task 3 -Complete worksheets in your books
Must show working out

- Task 1 sign and magnitude
- Task 2 Two's compliment
- Task 3 Binary subtraction

Excellence

Create a revision guide detailing all methods of binary conversions, addition, subtraction, shifts

Learning Intention

To develop knowledge by

 understanding that binary numbers can be changed to represent positive and negative numbersTo secure understanding by explaining how negative numbers are creating using different methods

To achieve excellence by

Applying knowledge to perform conversions and subtractions using two's complement.

