Monday, 04 April 2022

Learning Intention

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

<u>To secure understanding</u> by explaining how negative numbers are creating using different methods

<u>**To achieve excellence**</u> by Applying knowledge to perform conversions and subtractions using two's complement.

Signed number

An integer which has either a negative or positive sign indicator

Signed numbers

An integer which has either a negative or positive sign indicator (+ 53 or - 53)

A computer can use both positive and negative numbers

Signed binary numbers use the Most Significant Bit (MSB) (far left number) to

display a range of either positive or negative numbers

S.P.I.R.I.T ✓ Innovation

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

Sign and magnitude

S.P.I.R.I.T ✓ Innovation

One method of using the **MSB** for signed numbers is called **sign and magnitude**

In this method:

1 on the MSB indicates a negative number so 1000001 = -1

0 on the MSB **indicates a positive number** so 000001 = +1

The largest possible number is +127 (or 01111111).

The smallest possible number is -127 (or 1111111)

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

<u>To secure understanding</u> by explaining how negative numbers are creating using different methods

Two's compliment

Another method of representing signed numbers is called Two's complement

Again it uses the MSB to determine positive or negative

0 = positive 1 = negative

The rules: Positive numbers

Remain the same as normal binary e.g 4 = 0 1 0 0 (up to 0 1 1 1 for 4 bit)

127 = 0 1 1 1 1 1 1 1 1 **(0 on the msb = positive 127)**

Negative numbers are different and follow this method:

- 1. Find the **positive version** of the binary number
- 2. Invert (flip) all digits so 1s become 0s and vice versa
- **3. Add 1** to it

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

<u>To secure understanding</u> by explaining how negative numbers are creating using different methods

Two's compliment: Negative numbers S.P.I.R.I.T Innovation Example: find -4 8 4 2 1 0 1 0 0 Step 1: Write the positive To secure understanding by version explaining how negative numbers are creating using different methods Step 2: flip all bits ()To achieve excellence by Applying knowledge to perform conversions and Step 3: Add 1 to it subtractions using two's complement. **Normal binary** addition rules \mathbf{O} -8 - 5 using two's complement is 0 = positive **1** = negative (-8 + 4)

Two's compliment: Negative numbers

Example: 8 bit number

Step 1: Write the positive version	128 0	64 0	32 1	16 1	8 0	4 1	2 0	1 1 = + 53	3	
Step 2: flip all bits	1	1	0	0	1	0	1	0		0 = positive 1 =negative
Step 3: Add 1 to it	1	1	0	0	1	0	1	0 Norm 1 additi	al bina on rule	ry 2S
	1	1	0	0	1	0	1	1	explain numbe differei	ing how negative ars are creating using nt methods
- 53 using two's complement is	-128 1 (-1	64 1 128	32 0 + 6	16 0 54 +	8 4 1 0 · 8 -	2 1 + 2	1 1 + 1	= - 53)	To ach Applyin perforn subtrac comple	ng knowledge to m conversions and ctions using two's ement.

Binary subtraction

Binary subtraction works by

- taking the Two's complement of the second number
- and adding it to the first •

		_		0 1 2 1 1)
Example: $7-5=2$	7	5		
Positive	8421	8 4 2 1		
binary versions:	0 1 1 1	0101		
Two's compliment of 2 nd		1011		To secure understanding by explaining how negative numbers are creating using
number:		0 1 1 1		different methods
Add them together in usual way:	Last bit overflows and is ignored	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 2	To achieve excellence by Applying knowledge to perform conversions and subtractions using two's
				complement

= - 5

Reminder: Two's complement of 5

2 1

-8

4

1 0 1 1

(-8 + 7 + 1)

Tasks 1 and 2

Task 1 – What is meant by a signed number?

- Draw a diagram showing an 8 bit number
- Label the Most significant bit

Task 2

Sign and Magnitude

• Explain how sign and magnitude is used to represent negative and positive numbers – use an example/diagram

Two's complement

• Explain what Two's compliment is and the method used to make negative numbers – use an example/diagram

Subtraction

• Write down the method of how to subtract binary numbers

Learning Intention

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

To secure understanding by
 explaining how negative numbers
 are creating using different
 methods

<u>**To achieve excellence**</u> by Applying knowledge to perform conversions and subtractions using two's complement. Task 3 – Complete worksheets in your books

Must show working out

- Task 1 sign and magnitude
- Task 2 Two's compliment
- Task 3 Binary subtraction

Excellence

Create a revision guide detailing all methods of binary conversions, addition, subtraction, shifts

Learning Intention

To develop knowledge by

understanding that binary numbers can be changed to represent positive and negative numbers

- To secure understandingexplaining how negative numbersare creating using differentmethods
- To achieve excellence by
 Applying knowledge to perform
 conversions and subtractions using
 two's complement.