Learning Intention

To develop knowledge

by Understanding what an 8 bit register is.

To secure understanding by Explaining the concept of overflow and underflow in relation to an 8 bit register

To achieve excellence by
Applying the concept of overflow and underflow in relation to an 8 bit register

$$
\begin{aligned}
& \text { Register } \\
& \text { Small area of temporary } \\
& \text { memory within a CPU }
\end{aligned}
$$ using examples

https://www.bbc.com/bitesize/clips/zycamp3

Task 1:

Explain what an 8 bit register is? Must include:

- How many binary digits can be stored
- An example of binary number that can fit in an 8 bit register

Task 2:

1. Explain overflow and include the exam board definition of Overflow
2. Choose your own binary numbers which when added together will cause an overflow:

- Write both numbers down and perform the addition
- Label where the overflow is and explain it

Task3:

1. Write a definition of Underflow
2. Draw a diagram showing how right shifting 00000001 will cause an Underflow

To develop knowledge

by Understanding what an 8 bit register is.

To secure understanding by Explaining the concept of overflow and underflow in relation to an 8 bit register

To achieve excellence by

Applying the concept of overflow and underflow in relation to an 8 bit register using examples

THINK IT

- Write a user guide for
- converting denary numbers to binary and binary to denary.
- You need to include how a computer uses numbers and include the rules for binary addition

How many bits is this binary number?

1	0	0	0	1	0	1	1
$\mathcal{H}_{\text {it }}$	1 bit	1					
1				it			

Most significant
What is a bit?
Least significant bit LSB
a bit (or binary digit), is the smallest unit of data in computing

Binary numbers are made up of binary digits

8 bit register

So...

Small area of temporary memory within a CPU

1 is a 1 bit number (it has 1 bit in it)
111 is a 3 bit number
11111111 is an 8 bit number

A register is a small storage location in the CPU
An 8 bit register can only store data that is up to 8 bits long.

11111111

To develop knowledge
by Understanding what an 8
bit register is.

Overflow

If the result of an addition process results in a number that is too large to fit in the space available then an overflow has occurred.

For example if we tried to store the addition of the following two 8 bit numbers in an 8 bit register (small area of memory).

11011011 11111011 + 111010110

To secure understanding by
Explaining the concept of overflow and underflow in relation to an 8 bit register

The answer is too large to fit into the register (it is 9 bits in length).
Where this happens, an overflow is said to have occurred.

Exam board says:
The computer processor detects that there has been a carry on the MSB and sets the overflow flag to true

1	0	0	0	1	0	1	1
pit $_{\text {it }}$	1 bit						

Overflow

Take the biggest possible 8 bit binary number:

To secure understanding by
Explaining the concept of overflow and underflow in relation to an 8 bit register

$128+64+32+16+8+4+2+1=255$
And add 1 to it:

8 bit number								
$\mathbf{1}$								
$\mathbf{2 5 5}$								
$\mathbf{0}$	0	0	0	0	0	0	1	
1								
1	1	1	1	1	1	1		
$\mathbf{0}$								
$\mathbf{0}$								

8 bit number								
1	1	1	1	1	1	1	1	255
0	0	0	0	0	0	0	1	1
1	1	1	1	1	1	1		=
0	0	0	0	0	0	0	0	0

The computer processor detects that there has been a carry on the MSB and sets the overflow flag to true

Underflow

Underflow would occur when the number resulting from a calculation is too small to be represented
e.g. in an 8 bit register an arithmetic shift right on
0000001 would result in a number that can't be represented.

Underflow example

Right shift 1 place

	128	64	32	16	8	4	2	1
	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1

In an 8 bit register:
An arithmetic shift right on
0000001 would result in a number that can't be represented.

