Logical operations

- Logical operators Use AND, OR, NOT and XOR logical operators, combinations of these, and their application in appropriate truth tables to solve problems.
- Boolean logic Simplify Boolean expressions using Boolean identities and rules.

2014 – truth table

(b) Complete the following truth table, for the logical OR operation, by writing either **False** or **True** in the last column. [4]

Α	В	A OR B
True	True	
True	False	
False	True	
False	False	

2015 – truth table

(a) Complete the following truth table, for the logical AND operation, by writing 0 or 1 in the last column. The first row has been completed for you. [3]

Α	В	A AND B
0	0	0
0	1	
1	0	
1	1	

Complete the following Truth Table.

Α	В	A OR B	NOT (A OR B)
1	1		
1	0		
0	1		
0	0		

[4]

(a) (i) Complete the following truth table.

A	В	B	A. B	$A.\overline{B}$	$B + (A.\overline{B})$
1	1				
1	0				
0	1				
0	0				

(ii)	Use this truth table to simplify the expression.	
V-7	coo and additioned to employ the expression.	

$$B + (A.\overline{B})$$

[4]

[1]

(a) Complete the following truth table.

P	Q	P+Q	P.Q	P.Q	$\overline{P.Q}$ + $(P+Q)$
1	1				
1	0				
0	1				
0	0				

(b) Draw a truth table for the expression:

$$X = A.B + \overline{A}.B$$

[4]

[4]

Mark scheme

P	Q	P+Q	P. Q	<u>P. Q</u>	$\overline{P \cdot Q} + (P + Q)$
1	1	1	1	0	1
1	0	1	0	1	1
0	1	1	0	1	1
0	0	0	0	1	1

One mark for each of the following correct columns:

- P+Q
- P.Q
- P.Q
- $\overline{P \cdot Q} + (P + Q)$

Sample / 2017 – truth table

Draw a truth table for the expression:

$$X = A.B + A.\overline{B}$$

Mark scheme on next slide

Sample / 2017 – truth table

Mark scheme

One mark for each correct row (table can contain more or fewer columns)

A	В	A.B	\overline{B}	$A.\overline{B}$	$A.B + A.\overline{B}$
1	1	1	0	0	1
1	0	0	1	1	1
0	1	0	0	0	0
0	0	0	1	0	0

(i) Using the following identities:

$$P. 1 = P$$

$$P. Q + P. R = P. (Q + R)$$

$$P + \overline{P} = 1$$

simplify the Boolean expression:

$$X = A.B + A.\overline{B}$$

15	Carry out in register		ND operat	ion on the	bits in the	registers A	A and B an	d write the i
	Α	0	0	0	1	1	0	1
	В	0	0	0	0	0	0	1
	С							
(c)			produced i jister B on				gical AND	operation

(b)	A heater is controlled by an embedded system.
	 There is a power button (A) to turn the power going to the heater on or off. A temperature sensor (B) will turn the heater on when the temperature is below 20°C, provided the power button has been left on. A manual override switch (C) will turn the heater on, regardless of the temperature provided the power button has been left on.
	Construct a logic statement to represent this situation, using the symbols A, B, and C. [3]

How do OR and XOR logic gates differ? [1 Mark]

An OR gate always outputs 0 no matter what the inputs whereas an XOR outputs a 1 if one or more of the inputs is a 1
There is no difference
An OR gate outputs a 1 if one or more of the inputs is a 1 whilst an XOR outputs a 1 if only one (not both) of the inputs is a 1