AQA GCSE Chemistry: Higher Tier Advance Information of Assessed Content 2022 Link to specification: GCSE Chemistry Specification Specification for first teaching in 2016 (aqa.org.uk) Link to advance information document: <u>Advanced information June</u> 2022 - GCSE Chemistry (8462) (aqa.org.uk) # AQA GCSE Chemistry: Higher Tier Paper 1 ## Exam date: 27th May All other specification points from C1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | Spec point | Concepts | Bitesize | YouTube | |--|---|--|--| | 4.1.2 The Periodic Table | The Periodic Table is arranged in order of proton number What atoms of elements in the same group have in common What atoms of elements in the same period have in common development in the Periodic Table ions formed from metals and non-metals trends in physical and chemical properties of group 1,7 and 0 elements Reactions of group 1 and 7 elements | https://www.bbc.co.uk/bitesiz
e/guides/z3sg2nb/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zg923k7/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zqwtcj6/revision/1 | https://www.youtube.com/watch?v=IdS9roW 7IzM&t=119s https://www.youtube.com/watch?v=uwzXfZo CP_k https://www.youtube.com/watch?v=dZGDUK Qa_6g https://www.youtube.com/watch?v=HT1zAPQ IBAQ | | 4.2.1 Chemical bonds, ionic, covalent and metallic | Describe the process of ionic bonding Describe the process of covalent bonding Describe the process of metallic bonding explain chemical bonding in terms of electrostatic forces and the transfer or sharing of electrons. work out the charge on the ions of metals and non-metals from the group number of the element, limited to the metals in Groups 1 and 2, and non-metals in Groups 6 and 7 Describe the structure of ionic compounds draw dot and cross diagrams for the molecules of hydrogen, chlorine, oxygen, nitrogen, hydrogen chloride, water, ammonia and methane Describe the structure of metals | https://www.bbc.co.uk/bitesiz
e/guides/zyydng8/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zcpjfcw/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/z8db7p3/revision/1 | https://www.youtube.com/watch?v=6DtrrWA 5nkE https://www.youtube.com/watch?v=lenvZEc Mc60 https://www.youtube.com/watch?v=lhEm7aA KIDg https://www.youtube.com/watch?v=5I_1jRGS R9E https://www.youtube.com/watch?v=b1y2Q6Y X1bQ https://www.youtube.com/watch?v=A- wTpLPICd0&t=13s | | 4.2.2 How bonding and structure are related to the properties of a substance | interpreting melting and boiling point data to determine state at a certain temp link energy needed to change state to strength of forces between particles state symbols describe & explain properties of ionic compounds describe & explain properties of simple covalent molecules describe & explain properties of polymers describe & explain properties of metals and alloys | https://www.bbc.co.uk/bitesiz
e/guides/zyydng8/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zcpjfcw/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/z9twsrd/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/z8db7p3/revision/1 | https://www.youtube.com/watch?v=leVxy7cj ZMU https://www.youtube.com/watch?v=DECGNy C-x_s https://www.youtube.com/watch?v=EP0zfm FVqc https://www.youtube.com/watch?v=A- wTpLPICd0 | # Exam date: 27th May All other specification points from C1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | Spec point | Concepts | Bitesize | YouTube | |---|---|--|--| | 4.2.3 Structure and bonding of carbon | describe and explain the properties of diamond, graphite,
graphene and fullerenes | https://www.bbc.co.
uk/bitesize/guides/z
9twsrd/revision/1 | https://www.youtube.com/watch?v=tGH
0mXCcEFU | | 4.3.2 Use of amount of substance in relation to masses of pure substances | calculating relative formula mass calculating the number of moles in a given mass of a substance, calculating the mass of a certain no. of moles of a substance Avogadro's constant – the number of particles in 1 mole of every substance calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product. using molar ratios to balance equations identifying limiting reactants and explaining the effect on yield of products define concentration of a solution calculate the concentration of a solution, or the mass of a solute dissolved in a given volume to create a solution of given concentration | https://www.bbc.co.
uk/bitesize/guides/z
gcyw6f/revision/1
https://www.bbc.co.
uk/bitesize/guides/z
3kg2nb/revision/1 | https://www.youtube.com/watch?v=q49 NwlrjaFw https://www.youtube.com/watch?v=wP GVQu3UXpw https://www.youtube.com/watch?v=TV6 n5MFH6IU https://www.youtube.com/watch?v=YKv UQ2cPmJg https://www.youtube.com/watch?v=Mu zOmFhiE80 https://www.youtube.com/watch?v=3G3 KQlyoZDI | | 4.4.1 The Reactivity of Metals | Metals + oxygen Reduction and oxidation in terms of oxygen reduction and oxidation in terms of electrons identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced The Reactivity Series Displacement reactions Extraction of metals by reduction | https://www.bbc.co.
uk/bitesize/guides/zs
m7v9q/revision/1 | https://www.youtube.com/watch?v=Lk1 V0buHEFs https://www.youtube.com/watch?v=gnb uTl2aril https://www.youtube.com/watch?v=2i5L m7BMtpo https://www.youtube.com/watch?v=MX TSels6e2Y | # Exam date: 27th May All other specification points from C1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | choice questions/ infice to a previous answer, so cannot be completely ignored in your revision. | | | | | | |---|---|--|---|--|--| | Spec point | Concepts | Bitesize | YouTube | | | | 4.4.2 Reactions of Acids | Naming Salts products of the reactions of acids and metals explain the reactions of metals and acids in terms of loss and gain of electrons produces of the reactions of acids and alkalis and insoluble bases products of the reactions of acids and metal carbonates pH scale and neutralisation difference between strong and weak acids | https://www.bbc.co.
uk/bitesize/guides/zc
jjfcw/revision/1 | https://www.youtube.com/watch?v=ofw6oHSYGFI GCSE Science Revision Chemistry "Acids Reacting with Metals 2" - YouTube https://www.youtube.com/watch?v=QlSsle_jSQ8 | | | | 4.4.2.3 and Required Practical 1: preparation of a pure, dry sample of soluble salts | method of producing solid salt crystals from insoluble oxide or carbonate and acids identifying errors in methods and reagents | https://www.bbc.co.
uk/bitesize/guides/zc
jjfcw/revision/6 | https://www.youtube.com/watch?v=9GH95172Js8&
t=16s
GCSE Science Revision Chemistry "Strong and Weak
Acids" – YouTube | | | | 4.4.2.5 and Required practical 2: determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. | Method control variables and how to monitor them quantitative analysis of results | https://www.bbc.co.
uk/bitesize/guides/zx
98pbk/revision/1 | https://www.youtube.com/watch?v=saRBT5oZfh8 https://www.youtube.com/watch?v=vn3Rx3g1VPk https://www.youtube.com/watch?v=x8DLLCNMKAs https://www.youtube.com/watch?v=ycC4oKteRJU | | | | 4.4.3 Electrolysis | The process of electrolysis identifying oxidation and reduction in terms of electrons writing half equations for oxidation/reduction reactions occurring at each electrode Electrolysis of molten ionic compounds Electrolysis of aluminium oxide Electrolysis of aqueous solutions, predicting products formed | https://www.bbc.co.
uk/bitesize/guides/zc
syw6f/revision/1 | https://www.youtube.com/watch?v=AhTRiL6xjBA&t =2s https://www.youtube.com/watch?v=ilNOpROacf0 https://www.youtube.com/watch?v=YcyMEIBEzAY https://www.youtube.com/watch?v=6WjC_Vi4roA https://www.youtube.com/watch?v=W9ngXNxSyoo | | | # Exam date: 27th May All other specification points from C1, other than those on these pages that are explicitly omitted, may still be assessed in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | the state of s | | | | | | |--|---|--|---|--|--| | Spec point | Concepts | Bitesize | YouTube | | | | 4.5.1 Exothermic and endothermic reactions | describe the law of the conservation of energy define exo and endothermic reactions and describe their features give examples of exo and endothermic reactions define activation energy represent exo and endothermic reactions with reaction profiles describe bond breaking in the reactants as an endothermic process describe bond formation in the products as an exothermic process calculate the energy transferred in chemical reactions using bond energies supplied Use energy change values to identify if a reaction is exo/endothermic | https://www.bbc.co.uk/bitesize/guides/zwfr2nb/revision/1 | https://www.youtube.com/watch?v=4HS6D0hTzdg https://www.youtube.com/watch?v=dstRL5xB0Sk https://www.youtube.com/watch?v=it0HGXhxD-s https://www.youtube.com/watch?v=eExCBkp4jB4 https://www.youtube.com/watch?v=PdValXAVUOc | | | | Required Practical 4: investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, carbonates, neutralisations, displacement of metals | Identifying independent, dependent, control variables Analysing results identifying exo and endothermic reactions from experimental results | https://www.bbc.co.uk/bitesize/guides/zwfr2nb/revision/2 | https://www.youtube.com/
watch?v=Bz0C9mmF2tw | | | This specification point will **not** be assessed on this paper: #### **Spec point** **4.2.4** Bulk and surface properties of matter including nanoparticles # AQA GCSE Chemistry: Higher Tier Paper 2 ## Exam date: 20th June All other specification points from C2, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | choice questions/initied to a previous answer, so cannot be completely ignored in your revision. | | | | | | |---|---|--|---|--|--| | Spec point | Concepts | Bitesize | YouTube | | | | 4.6.1 Rate of Reaction | Calculating the rate of a reaction Calculate the gradient of a tangent to the curve on these graphs as a measure of rate of reaction at a specific time. Describe collision theory Define activation energy Describe and explain the factors that increase the rate of reaction Describe and explain the effect of catalysts on rate of reaction | https://www.bbc.co.
uk/bitesize/guides/z
3nbqhv/revision/1 | https://www.youtube.com/watch?v=UkrBJ6-uGFA https://www.youtube.com/watch?v=GCR5xeduq2 o https://www.youtube.com/watch?v=-4HXaUBbv04 https://www.youtube.com/watch?v=hel8fQjxcO8 | | | | Required Practical 5: investigate how concentration affects the rates of reaction by a method involving measuring the volume of a gas produced/change in colour | identify independent, dependent and control variables describe how to measure the dependent variable analyse results and draw conclusions from graphed data calculate rate of reaction from data | Required practical - measure the production of a gas - Rates of reaction - AQA - GCSE Chemistry (Single Science) Revision - AQA - BBC Bitesize | https://www.youtube.com/watch?v=N5p06i9ilmo https://www.youtube.com/watch?v=Gl6LVI7oAlU | | | | 4.6.2 Reversible reactions and dynamic equilibrium | Identify and give examples of reversible reactions Apply the conservation of energy to reversible reactions Define dynamic equilibrium Describe Le Chatelier's principle Describe and explain the effect of changing the following conditions on equilibrium; concentration, temperature, pressure | https://www.bbc.co.
uk/bitesize/guides/z
yhvw6f/revision/1 | https://www.youtube.com/watch?v=66qcNNJFy6E GCSE Science Revision Chemistry "Concentration and Reversible Reactions" – YouTube GCSE Science Revision Chemistry "Pressure and Reversible Reactions" – YouTube GCSE Science Revision Chemistry "Temperature and reversible reactions" – YouTube GCSE Chemistry - Le Chatelier's Principle #42 (Higher Tier) – YouTube | | | ## Exam date: 20th June All other specification points from C2, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | Spec point | Concepts | Bitesize | YouTube | |---|---|--|--| | 4.7.1 C arbon compounds as fuels and feedstock | describe crude oil as a mixture of different length hydrocarbons define the term hydrocarbon identify the first 4 alkanes from their chemical formula and name them Describe the trend in properties as hydrocarbon chain length increases Describe and explain the process of fractional distillation describe the process of cracking describe the use of alkenes | https://www.bbc.co.uk/bi
tesize/guides/zshvw6f/re
vision/1 | https://www.youtube.com/watch?v=CX2IYWggEBchttps://www.youtube.com/watch?v=3I7yCkSXPoshttps://www.youtube.com/watch?v=7AWwjKbRa_o | | Required practical 7: use of chemical tests to identify the ions in unknown single ionic compounds covering the ions from sections Flame tests through to Sulfates. | Describe reagents and positive results for each ion Describe method of flame tests | https://www.bbc.co.uk/bi
tesize/guides/zxtvw6f/rev
ision/1 | https://www.youtube.com/watch?v=BdOA44 lv2OI&t=96s https://www.youtube.com/watch?v=4iZRs4X lJOE https://www.youtube.com/watch?v=mWTg Hjdea4Y https://www.youtube.com/watch?v=fCZztwJ mAl0 | | 4.9.1 The composition and evolution of the Earth's Atmosphere | describe the composition of the current atmosphere describe the composition of the early atmosphere and explain theories of how the early atmosphere formed explain how the early atmosphere changed to that of the present atmosphere | https://www.bbc.co.uk/bi
tesize/guides/zg4qfcw/re
vision/1 | https://www.youtube.com/watch?v=t1Z3Gl
NIdLA
https://www.youtube.com/watch?v=l0h -
3M0Pso | #### Exam date: 20th June All other specification points from C2, other than those on these pages that are explicitly omitted, may still be assessed in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision. | energy discourse, mines to a promotion, or commented to the promotion in your revision. | | | | | | | |---|--|---|---|--|--|--| | Spec point | Concepts | Bitesize | YouTube | | | | | 4.10.1 Using the Earth's resources and obtaining potable water | Describe the renewable and non-renewable resources that we get form the Earth and its atmosphere Define the term potable water Describe how potable water can be produced. Describe the differences in the treatment of waste water, salt water and ground water Describe and evaluate alternative methods of extracting metals e.g. phytomining and bioleaching | https://www.bbc.co.uk/bitesize/guide
s/zgqhcj6/revision/1
https://www.bbc.co.uk/bitesize/guide
s/zpcjsrd/revision/1
Biological methods of metal extraction
- Higher - Ways of reducing the use of
resources - AQA - GCSE Chemistry
(Single Science) Revision - AQA - BBC
Bitesize | https://www.youtube.com
/watch?v=-XczTGavTZU
https://www.youtube.com
/watch?v=n7pYRQs20bl
https://www.youtube.com
/watch?v=b5RVPauf4oM | | | | | 4.10.4 The Haber process and the use of NPK fertilisers | Describe the purpose of the Haber process, the reaction and raw materials involved interpret graphs of reaction conditions versus rate apply the principles of dynamic equilibrium in Reversible reactions and dynamic equilibrium (4.6.2) to the Haber process explain the trade-off between rate of production and position of equilibrium explain how the commercially used conditions for the Haber process are related to the availability and cost of raw materials and energy supplies, control of equilibrium position and rate Describe NPK fertilisers as formulations of various salts containing appropriate percentages of the elements. Describe the composition of NPK fertilisers and how they are made recall the names of the salts produced when phosphate rock is treated with nitric acid, sulfuric acid and phosphoric acid | https://www.bbc.co.uk/bitesize/guide
s/z9tvw6f/revision/1 | https://www.youtube.com
/watch?v=1_HoWz5Kxfk
https://www.youtube.com
/watch?v=HAkaD6-7fgQ
https://www.youtube.com
/watch?v=rKzt9BvvEeQ | | | | This specification point will **not** be assessed on this paper: #### **Spec point** **4.9.2** Carbon dioxide and methane as greenhouse gases