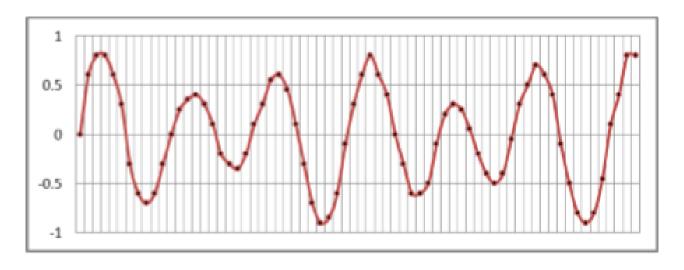

Sound 2016

 Below is a representation of a simple sound wave. The wave is sampled every second and the amplitude is stored as a 4-bit binary number.

(a) Complete the table below to show how the wave would be represented in binary.

Time	1	2	3	4	5	6	7	8
Amplitude	6	7	2					3
Binary	0110	0111						0011


[5]

Sound 2016	(b)	(i) State the number of bits required to store the binary data from the completable.			
		(ii) Convert your answer from (b) (i) to bytes. [1]			
	(c)	Taking a sample every second produces a very poor quality sound. Explain how the sample rate could be altered to improve the sound quality. [1]			
	(d)	(i) If ten samples were taken every second, state the effect on the size of the file. [1]			
		 (ii) Calculate the number of bytes required to store the data for the wave when ten samples per second are taken. You must show your workings. 			

Sample 2017 – sound

Sound sampling is used in the digital storage of sound.

(a)	Explain the process of sound sampling.	[3]

Samp	le	201	7 –	SO	ur	nd
------	----	-----	-----	----	----	----

(b)	Describe how sound samples are stored.	[2]
		• • •

Sound and graphics can be stored by computer systems.

(a) Tick (✓) the boxes below to show whether the statements about sound sampling are TRUE or FALSE.
 [3]

STATEMENT	TRUE	FALSE
Natural sound is in digital form. This is sampled and converted into analogue form to be stored by computer systems.		
A sound sample rate of 16 KHz means the wave is sampled 160,000 times a second.		
The lower the sampling rate, the better the quality of the sound file.		

(b) State what is meant by metadata and give an example of metadata stored in graphics files.

