
Binary to Decimal

- 1. Write the base 2 number system above the value.
- 2. Add up any number with a 1 below it.

Binary to Hexadecimal

- 1. Split the binary number into 2 nibbles.
- 2. Convert each nibble to decimal and the hexadecimal.

Decimal to Binary

 Start from the left and check if 128 will fit into your number, if it does, write a 1 under it and take 128 from the total. Keep going along the binary values.

Decimal to Hexadecimal

- Find how many 16s fit into your decimal number. Write this down as you first value.
- 2. Write the remainder as the second number (in hexadecimal).

$$166 = 10 \times 16$$
's and 6×1 's

Hexadecimal to Binary

1. Follow the Binary to Hexadecimal instructions in reverse.

Hexadecimal to Decimal

1. Multiply the first value by 16 and the second by 1. Add them all together.

Dec to

<u>Hex</u> Table

1 = 1

2 = 2

3 = 3

4 = 4

5 = 5

6 = 6

7 = 7

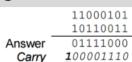
8 = 8

9 = 9

10 = A

11 = B

12 = C


13 = D

14 = E

15 = F

Overflow

When a carry occurs on the most significant bit.

- Identifying that a carry on the MSB has occurred
- CPU detects that a carry has occurred and sets the overflow flag to true.

Binary Shift

Left = Multiply, Right = Divide

1 place....X or ÷ by 2

2 places....X or ÷ by 4

3 places....X or ÷ by 8

REMEMBER - Hexadecimal is just shorthand for binary. It takes up no less space.